23 Желтоқсан, Дүйсенбі

Оқушыларға

Математика тарихы






Шымкент аграрлық колледжі
Орындағандар:ТК-171 тобының студенттері Жолдасбекова Назгүл, Қантөре А.
Жетекшісі: Бедебаева Айгуль Ерсултановна



Математика грек тілінен қазақшаға аударғанда «білім, ғылым» деген мағынаны білдіреді. Ғылым тарауларын гректер «математ» деп атаған, осыдан математика деген термин қалыптасқан.
«Математика — ақиқат дүниесінің сандық қатынастары мен кеңістік формалары жайлы ғылым» деген анықтаманы Ф.Энгельс XIX ғасырдың екінші жартысында берген, «Әлем математика тілімен бейнеленген» деген тұжырымды ойын Г.Галилей айтқан.

Көрнекті совет математиктері А. Н. Колмогоров пен А. Д. Александров ұсынған жіктеу бойынша математиканың даму тарихы шартты түрде төрт кезеңге бөлінеді.

Бірінші кезең математика, білім дағдылардың қолдану, жинақтау дәуірі. Ол ерте кезден басталып, б.з.б. 7 - 6 ғасырларына дейін созылады. Бұл дәуірде математика адамзаттың өмір тәжірібисіне тікелей тәуеді болды, солардан қорытылған ережелер жинағынан құралды. Екінші кезең математиканың өз алдына дербес теория, ғылым болып тууы, қалыптасу кезеңі. Мұнда, көбінесе, сандар, скалярлық шамалар және қарапайым геометриялық фигуралар қарастырылды. Математика зерттейтін шамалар (ұзындық, аудан, көлем т.б.) тұрақты болып келді. Осы уақыттарда арефметика, геометрия, алгебра, тригонометрия және математикалық анализдің кейбір элементтері пайда болып, айрықша теория пән ретінде қалыптасты. Математика сауда саласында жер өлшеуде, астрономияда, архитектурада қолданыла бастады. Бұл кезең тұрақты шамалар математикасы, элементтер матиматикасы кезеңі деп те аталады. Ол екі мың жылға жуық мерзімге созылып, шамамен 17 ғасырда аяқталды. Үшінші кезең айнымалы шамалар математикасы немесе жоғарғы математиканың (математика, анализ, геометрия, т.б.) туу, қалыптасу кезеңі 17-18 ғасырдағы жаратылыстану мен техниканың жылдам дами бастауы математикаға қозғалыс пен тұрақсыздық идеяларын айнымалы шамалар және олрдың арасындағы функционалдық тәуелдік түрде енгізу қажеттілігін туғызды. Нәтижесінде математиканың аналитикалық геометрия, диференциалдық және интегрициалдық есептеулер, т.б. салалары пайда болып диференциалдық теңдеулер теориясы мен диференциялдық геометрия дами бастады. Бұл 17 ғасырда басталып, 19ғасырдың 2 жартысына дейін созылды. 19-20 ғасырда кәдімгі шамалар мен қазіргі алгебрада зерттелетін нысандардың тек дербес ысалдары болып қалды. Геометрия Эвклид кеңістігі дербес түрі болатын «кеңістіктерді» зерттеуге көшті. Н.И.Лобачевский ашқан Евклид емес геометрия жүйесі бұл бағыттағы алғашқы қадам болды. Нақты және жорымал санды функциалар, жиындар, ықтималдықтар және топтар теориялары, проективтік және Евклидтік емес геометрия, математика, логика, векторлық анализ, функционалдық анализ, т.б. Математиканың жаңа салалары дами бастады. Бұл математиканың негізгі мәселелерін жалпы қарастыру кезеңі, төртінші кезең қазіргі математика кезеңі. Есептердің жауаптарын сандық түріде беру үшін 19-20 ғасырда сандық әдістер негізінде математиканың жеке тарауы - есептеу математикасы пайда болды. Көптеген есептердің күрделі сандық шешімдерін ықшамдау және тездетіп шығару үшін электрондық есептеу машиналары, компьютерлер жасалына бастады. Есептеу техникасының кең қолданылуына байланысты бағдарламалау теориясы пайда болды. 20 ғасырдың 50-жылдарынан бастап математика ғылымының автоматтар және тиімді басқару теориясы, ойындар теориясы, алгебра, геомертия, ақпараттар теориясы, математикалық экономика, т.б. көптеген жаңа салалары пайда болды.

Математиканың бастапқы мағлұматтары барлық халықтарда болған. Ғылымның дамуына әсіресе Египетте, Вавилонда жинақталған мәдени дәстүрлердің ықпалы үлкен болды. Бұл елдерде б.з.б. 4-5 мың жылдай өзіндік мәдениет өркендеп, ғылыми білім қорланған. Календарь жасау, құрылыс, жер суару, жер және әр түрлі ыдыс көлемін өлшеу, теңізде жүзу, жан-жақты байланыс жасау ісі математикалық білім- дағдылардың дамуын талап етті, оның бастапқы қарапайым ережелері дәлелдеусіз қалыптаса бастады. Египетте санды иероглиф арқылы кескіндеу пайда болды, бүтін, бөлшек сандарға арифметикалық төрт амал қолдану ережелері мәлім болды. Бір белгісізі бар теңдеулер, сондай-ақ қарапайым арифметикалық және геометриялық прогрессияларға келтірілетін есептер шығару тәжірибесі кездеседі. Египеттіктер төртбұрыштың, трапецияның, үшбұрыштың ауданын, параллелепипед пен табаны квадрат пирамиданың көлемін дәл есептей білген, дөңгелек ауданын жуықтап тапқан.

Вавилондықтар санаудың позициялық алпыстық жүйесін қолданған. Олар сандарды көбейту, квадраттау, квадрат және куб түбір табу, бөлу таблицаларын жасады; бірінші, екінші, аракідік үшінші дәрежелі теңдеуге келтірілетін есептерді шеше білген. Вавилондықтардың геометриялық білім-дағдылары египеттіктермен деңгейлес. Алайда олар астрономиялық өлшеулер (бұрыш өлшеу тәрізді) жүргізгендіктен тригонометриялық білімдерден де хабардар болған. Пифагор теоремасы да вавилондықтарға белгілі болған. Египет пен Вавилонда б.з.б. 3-5 мың ж. арифметикалық амалдар қолдану, аудан мен көлем табу, таблицалар жасау, біртектес есептер шығару әдістерін жасау тәріздес көптеген математикалық білім-дағдылардың жинақталғанын көреміз. Бұл мағлұматтар мен дәстүрлер математиканың өзінше зерттеу пәні, әдістері бар дербес ғылым болып бөлініп шығуына жағдай жасады.

Элементтар математика кезеңі. Ежелгі Греция. Әр түрлі арифметикалық әдістер мен аудан, көлем табудың тәсілдері жөнінде нақты материалдар жинақталғаннан кейін ғана (б.з.б.7 ғасырдан) математика Ежелгі Грецияда дербес ғылым дәрежесіне көтерілді. Грек ғалымдарының (Фалес, Пифагор, Детель, Гиппократ, Евдокс, Аристотель, Евклид, Архимед, Аполлоний т.б.) еңбектері арқылы математика бірте-бірте практикалық мәселелерді ғана шешуге бағытталған жалаң эмпирикалық ғылымнан өзінің нәтижелерін түпкі қағидаларын (аксиомалардан) логикалық қорытынды түрінде шығаратын дедукциялық ғылымға айналды. Бізге жеткен деректерге қарағанда геометриялық шындықтарды дәлелдеу практикасын Фалес енгізген болу керек (б.з.б.7 ғасыр). Фалес дәлелдепті деп саналатын теоремалар: диаметр дөңгелекті қақ бөледі; тең бүйірлі үшбұрыштың табанындағы бұрыштары тең болады; екі түзу қиылысқанда тең бұрыштар пайда болады; сәйкес екі бұрышы және қабырғасы тең екі үшбұрыш тең болады. Бұл теоремаларды оның қалай дәлелдегені нақты дерек жоқ. Грецияда теориялық математиканың туып өркендеуіне шешуші еңбек сіңірген екінші бір ғылыми-философиялық мектеп атақты Пифагор мектебі болды. Пифагор ғылымның төрт саласын (арифметика, музыка, геометрия, астрономия) ажыратып, бұл бағытта терең зерттеулер жүргізген. Бұл ғылым тарауларын гректер «математа» деп атаған, осыдан «математика» деген термин қалыптасқан. Рим дәуірі. Б.з.б. 3 ғасырдан бастап жеті ғасыр бойы грек ғылымының, әсіресе математикалық зертетулердің орталығы түрліше мәдениеттің тоғысқан жері Александрия қалас болды. Александрия дәуірінің бірінші ғасыры грек математикасының «алтын ғасыры» болып табылады. Евклид, Архимед, Эратосфен және Аполлоний Пергскийдің математикадағы жетістіктері негізінен осы ғасырға жатады.

Александриялық ұлы математиктердің алғашқы қарлығашы Евклид болды. Ол жай сандар қатарының шексіз болатынын дәлелдеп, бөлінгіштік теориясын түбегейлі түрде жасап, сандар теориясының жүйелі негізін қалады. Аполлоний Пергский Евклид геометриясын толықтырып, кейіннен математиканың дамуында елеулі роль атқарған конустық қималар (парабола, эллипс, гипербола) теориясын жасады.
Ежелгі грек математикасының негізгі кемшіліктерінің бірі қалыптасқан иррационал сан ұғымының болмауы еді. Бұл жағдай арифметика мен геометрияны алшақтатып алгебралық есептеулердің шығуына кедергі жасады. Алайда кейінгі ғасырларда бұл қарама- қарсылыққа бұрынғыдай мән берілмей алгебраның бастамалары бой көрсете бастады. Грек ғалымы Геронның арифметикаға сүйенген есептеу геометриясының әдістерін баяндауға арналған шығармасы-«Метрика» (1 ғасыр) - осының айқын мысалы.

Қытай мен Үндістан. Қытайдың ертедегі математикалық жетістіктері б.з.б. 2-1 ғасырларда жазылған «Тоғыз кітаптағы математика» атты еңбекте баяндалған. Оларда есептеу техникасы мен алгебралық жалпы әдістер жақсы дамыған; мысалы, бүтін саннан квадрат және куб түбір табу, жоғары дәрежелі теңдеулерді жуықтап шешу әдістері, п санының мәнін есептеу т.б. Үнді математикасының өрлеген кезі Ариабхата, Брахмагупта, Бхаскара есімдерімен тығыз байланысты. Үнділердің математика тарихында екі негізгі жетістігі бар: санаудың ондық позициялық жүйесін ашуы, нөлді енгізуі, тек бөлшектерді ғана емес иррационал, теріс сандарды қамтитын алгебраны жасауы. Олар тригонометрияға синус, косинус, синус верзус сызықтарын енгізді. Орта Азия және Таяу Шығыс. Гректердің де, Ежелгі Шығыс елдерінің математикадағы мұрагерлері 7-8 ғасырларда араб халифатына біріктірілген Орта Азия және Таяу Шығыс елдерінен шыққан ғалымдар болды, олар еңбектерін сол кездегі ғылыми ортақ тіл- араб тілінде жазған. 9 ғасырдың 1- жартысында Орта Азия ғалымы Мұхаммед ибн Мұса әл-Хорезми тұңғыш рет алгебраны математиканың негізгі саласы ретінде баяндады. «Алгебра» термині әл-Хорезмидің шығармасының атынан қалыптасқан (әл-жебр). Әбу Наср әл- Фараби математиканы ірі-ірі 7 арауға бөліп, бұл пәннің мазмұнын анықтауға тырысты; сан ұғымын нақты сандарға дейін кеңейту идеясын ұсынып, осы негізде грек ғылымы аяқтай алмай кеткен (үлгермеген) проблеманы шешуге - бөлек- бөлек жүрген сандық алгебраның бастамаларын, астрономиядағы тригонометрияны және ғылыми тұрғыдан негізделмеген Геронның есептеу геометриясының басын біріктіруге талпынды.

16 ғасырға дейінгі Батыс Еуропа. 12-15 ғасырлар Бат. Европа үшін негізінен ежелгі гректер мен Шығыс мұраларын игеру дәуірі болды. Осы негізде Леонардо Пизанский кезінде үлкен беделге ие болған «Абақ туралы кітап» пен «Геометрия практикасын» жарыққа шығарды. Кітап басу ісі жолға қойылғаннан кейін оқулықтар кең тарала бастады, ғылыми ойдың орталықтары университеттерге шоғырланды. Иррационал сандардың табиғатын тереңірек зерттеу, бөлшек, теріс және нөлдік көрсеткіштерді енгізу арқылы алгебра, тригонометрия дамытылды, жеті таңбалы тригонометриялық таблицалар жасалды. 15 ғасырда математикалық символика кемелдене түсті (франц. Математигі Н.Шюке т.б.) 16 ғасырдағы Батыс Европа. Бұл ғасыр Батыс Европа математикасы ежелгі дүние мен Шығыс математикасын басып озған бірінші ғасыр болды. Итальян математиктері С.Ферро мен Н.Тарталья мүмкін емес саналып келген үшінші дәрежелі теңдеудің, ал Л. Феррари төртінші дәрежелі теңдеуді шешудің алгебралық әдістерін тапты. Дж. Кардано үшінші дәрежелі теңдеудің келтірілмейтін жағдайын зерттей келіп, комплекс сандарын ашты. Алгебраны әрі сандық дамытуда француз математигі Ф. Виет көп еңбек етті. Ол п - дәрежелі теңдеуді олардың берілген түбірлері арқылы құру әдісін көрсетті. 18 ғасырға дейінгі Россия. 9-13 ғасырларда Россияда математика деңгейі басқа алдыңғы қатарлы Европа елдерімен шамалас болды. Монғол шабуылы мәдениет пен ғылымның дамуына ұзақ уақыт кесірін тигізді.15-16 ғасырларда математикалық қолжазбалар көптеп таралды. Бізге белгілі ең көне математикалық шығарма - 1136 жылы Новгород монахы Кириктің қолынан шыққан арифметика-хронологиялық есептеуге арналған қолжазба кітап. 6-17 ғасырлардағы математикалық қолжазбалардың мазмұны күрделірек болып келеді. 1703 жылы орыс математигі Л.Ф.Магницкий өзінің әйгілі «Арифметикасын» бастырды. Айнымалы шамалар математикасы кезеңі. 17 ғасыр.17 ғасырдан бастап математиканың дамуында негізінен өзгеше кезең басталды. Енді математика зерттейтін сандық қатынастар мен кеңістік формаларының ауқымы сандар, шамалар және геометриялық фигуралармен шектелмейді, алғы шепке функция ұғымы шығады, өйткені математикаға қозғалыс, өзгеріс идеясы ашық енгізіледі. Математеканың дамуындағы бұл кезең 17 ғасырдағы математикалық жаратылыс дамуына тікелей байланысты туды, жекелеген табиғат құбылыстарының ағымын жалпы, математикалық жолмен тұжырымдалған табиғат заңдары түрінде өрнектеу қажет болды. 17 ғасырдағы математикалық жетістіктері логарифмдердің ашылуынан басталды. 1637 жылы Р. Декарт «Геометрия» атты еңбегін жариялады. Ол мұнда сол дәуірдегі бүкіл математикаға дерлік алгебраны арқау етіп аналитикалық геометрияны жасады. Осының арқасында математикалық анализдің түрлі салаларының-дифференциалдық интегралдық, вариациялық есептеулердің тууын дайындаған жалпы әдіс жасады. Декарттың бұл әдісі екі идеяға- координаталар мен айнымалы шамалар идеясына негізделді. Математикалық анализдің бастамаларын жасауда П.Ферма, И. Кеплер, Б. Паскаль, ағылшын математигі Дж. Валлис т.б. көп еңбек сіңірді. р (х)=0 теңдеуінің түбірлерін y=p(х) қисық сызығы мен абцисса осінің қиылысу нүктелері арқылы кескіндеу мүмкіндігіне тығыз байланысты алгебрада кез келген дәрежелі теңдеудің нақты түбірлерін зерттеу қолға алынды Ньютон, францу. И. Ферманың максимум және минимумдар, қисық сызықтарға жанама жүргізу жөніндегі зерттеулерінде дифференциалдық және интегралдық есептеулердің әдістері кездеседі. Шексіз аз шамалар тағы бір көзі И. Кеплер мен Б. Кавальери еңбектеріндегі айналу денелерінің көлемін және басқа есептерді шешуге қолданылған «бөлінбейтіндер методы» болып табылады. 17 ғасырдың аяғына таман И. Ньютон мен Г. Лейбниц еңбектерінде дәл мағынасындағы дифференциалдық және интегралдық есептеулердің негізі қаланды. Олар алғаш рет жаңа есептеудің негізгі амалдары дифференциалдау мен интегралдауды жалпы түрде қарастырып, олардың өзара байланысын тағайындады (Ньютон-Лейбниц формуласы). Алайда Ньютон мен Лейбниц бұл мәселеге қатысы әр түрлі көзқараста болды. Ньютон үшін бастапқы ұғымдар- механикалық есептерден келген «флюента» (айнымалы шама) және оның «флюксиясы» (айнымалы шаманың өзгеру жылдамдығы). Флюксияларды және флюенталар бойынша флюнсиялар арасындағы қатыстарды (дифференциалдау және дифференциалдық теңдеулер құру) табуды көздеген тура есепке Ньютон флюнсиялар арасындағы қатыстар бойынша флюенталарды табу жайлы кері еспті, былайша айтқанда дифференциалдық теңдеулерді интегралдаудың жалпы есебін қарсы қойды. Лейбниц болса әсіресе шекті шамалар алгебрасынан шексіз аз шамалар алгебрасына көшуге көп көңіл болды, ол интегралды ең әуелі саны шексіз көп шексіз аз шамалардың қосынды ретінде, ал дифференциалдық есептеулердің негізгі ұғымын айнымалы шамалардың шексіз өсімшесі түрінде қарастырды. Бұл саладағы идеяларды Я. Бернулли, И. Бернулли, француз математигі Г. Лопиталь т.б. одан әрі дамытты. Аналитикалық геометриядан басқа алгебра мен анализге тығыз байланысты дифференциалдық геометрия д дамыды. 17 ғасырда проективтік геометрияның да негізгі ұғымдары қалыптаса бастады. Бұл ғасырдағы математиканың басқа жетістіктерінің қатарына сандар теориясы жөніндегі Б. Паскаль мен П. Ферма зерттеулерін, комбинаториканың негізгі ұғымдарының жасалуын, ықтималдықтар теориясы жайлы алғашқы жұмыстарды атауға болады.

18 ғасыр. Математиканың айтылмыш тараулары, әсіресе математикалық анализ 18 ғасырда одан әрі дамыды. Бұл салада ұлы математиктер Л. Эйлер мен Ж. Лагранж ерекше еңбек сіңірді. Осы ғалымдар мен француз математигі А. Лежандр еңбектерінде сандар теориясы алғаш рет жүйелі ғылым санатына қосылды. Алгебрада швейцар математигі Г. Крамер (1750) сызықтық теңдеулер жүйесін шешу үшін анықтауыштарды енгізді. Ағылшын математигі А. Муавр мен Л. Эйлердің көрсеткіштік және тригонометриялық функциялардың байланысын көрсететін формулалары комплекс сандардың математикадағы қолдану өрісін кеңейте түсті. И. Ньютон, шотланд математигі Дж. Стирлинг, Л. Эйлер және П. Лаплас шектеулі айырымдарды есептеудің негізін қалады. К. Гаусс 1799 жылы алгебраның негізгі теоремасының бірінші дәлелін жариялады. Математикалық анализ әсіресе дифференциалдық теңдеулер әдістері механика мен физиканың, сондай-ақ техникалық процестердің заңдарын, математикалық өрнектеудің негізін қалады; жаратылыс тану мен техниканың ілгерілеуі осы әдістерге тікелей байланысты болды. Ағылшын математигі Б. Тейлор (1715) кез келген функцияларды дәрежелік қатарға жіктеу жөніндегі өзінің формуласын ашты. 18 ғасыр математиктері үшін қатарлар анализдің ең бір қуатты, икемді құралына айналды. Л. Эйлер, Ж. Лагранж бірінші ретті, ал Л. Эйлер, Г. Монж, П. Лаплас екінші ретті дербес туындылы дифференциалдық теңдеулердің жалпы теориясының негізін қалады. Математикалық анализдің ықпалымен аналитикалық механика, математикалық физика т.б. жаңа салалар қалыптаса бастады; математикалық анализдің айрықша бір бұтағы - вариациялық есептеу қалыптасып, маңызды қолданыс тапты. Ағылшын математигі А. Муавр, Я. Бернулли, П. Лаплас 17-18 ғасырлардағы жекелеген нәтижелерге сүйеніп ықтималдықтар теориясының негізін қалады. Геометрия саласында Л. Эйлер элементар аналитикалық геометрия жүйесін жасауды аяқтайды. Л. Эйлер, француз математигі А. Клеро, Г. Монж еңбектерінде кеңістіктегі қисық сызықтар мен беттердің дифференциалдық геометриясының негізі салынды. Неміс ғалымы Ламберт перспектива теориясын дамытты, ал Г. Монж сызба геометрияны аяқталған түрге келтірді.

Қазіргі математика дәуірі. 18 ғасырдың аяғы мен 19 ғасырдың бас кезінен бастап математиканың дамуында бірсыпыра жаңа белгілер мен сипаттар орын алды. Математиканы негіздеудің көптеген мәселелеріне сын көзбен қайта қарау әрекетіне тоқтайық. Ол ең әуелі математиканың жаңа арауларын қамтиды. Шексіз аз шамалар жайлы бұрынғы анық емес бұлдыр түсініктің орнына шек ұғымын дәл анықтайтын тұжырымдар пайда болды (О. Коши, Б. Больцано, К. Вейерштрасс). Бұл нақты иррационал сандар теориясын жасауды, функциялар ұғымын қайта тексеруді т.б. зерттеулерді қажет етеді. Математикалық анализді негіздеу жөніндегі зерттеулер математиканың жаңа салалары - жиындар теориясы (неміс математигі Г. Кантор) мен нақты шамалар функциялары теориясының шығуына себепші болды (француз математиктері К. Жордан, Э. Борель т.б.). Функциялар теориясының тың және жемісті бір саласы функциялардың конструктивтік теориясы П. Л. Чебышев пен оның шәкірттерінің жұмыстарынан басталды. Осымен қарбалас геометрияның да негізгі ұғымдары жан-жақты терең сарапқа салынды. Бұл жөніндегі аса үлкен оқиғалар қатарына бүкіл математиканы түсінуде үлкен бет бұрыс жасаған евклидтік емес геометрия туралы Н. И. Лобачевский мен Я. Больяйдің жұмыстары жатады. Геометрия негіздері туралы осыдан кейінгі зерттеулер геометрия аксиомаларының толық тізімін жасауға әкеп тіреді, Б. Риман кез келген элементтерден тұратын жаратылыстағы объектілерді қамтитын кеңістіктің жалпы ұғымын берді, мұндай кеңістіктердің қасиеттерін зерттеуге 19 ғасырда дамыған дифференциалдық геометрия әдістерін қолданудың жолдарын көрсетті. 20 ғасыр дифференциалдық-геометриялық көп бейнеліктерді тұтас қарастыру саласында үлкен жетістіктерге қол жетті. Фигуралар мен кеңістіктердің жалпы қасиеттерін зерттеу барысында математиканың жаңа саласы - топология пайда болды. 19 ғасырда алгебрадан алгебралық теңдеулерді радикал арқылы шешу мәселесі айқындалды. Сонымен қатар алгебралық амалдардың жалпы қасиеттері мұқиет зерттеле бастады. Бұл жағдайда 20 ғасырда алгебраның жаңа бұтағы - абстрактілі немесе жалпы алгебраның жасалуына әкеп соқтырды. Осыған байланысты енгізілген топ, сақина, өріс ұғымдары математика мен жаратылыстанудың әр түрлі салаларында кеңінен қолданыс тапты. Алгебра мен геометрияның шекарасында норвег математигі С. Ли қазіргі физикада мәні зор үздіксіз топтар теориясын жасады.19 ғасырда математикалық анализдің қолданылу өрісі едәуір кеңейді. Механика мен физиканың жаңа салаларының (үздіксіз орта механикасы, баллистика, электродинамика, магнетизм теориясы, термодинамика) негізгі аппараты ретінде дифференциалдық теңдеулер теориясы жедел дамыды. 18 ғасырда мұндай түрдегі кейбір теңдеулер ғана шешілген болса, жалпы әдістер тек 19 ғасырда ғана дамытылды, физика мен механиканың есептеріне байланысты қазір де дамытылуда. Аспан механикасының есептерінде дифференциалдық теңдеулердің сапалық теориясы қолданыс тапты. Дифференциалдық теңдеулермен қатар интегралдық теңдеулер теориясы да дамытыла бастады.

Математикалық анализ бен математикалық физика дамуының геометрия мен алгебрадағы жаңа идеялармен түйіндесуі нәтижесінде математик мен оның қолдануында ерекше маңызды қызмет атқарып отырған математиканың үлкен бір жаңа саласы - функционалдық анализ жасалды. Статистикалық физика мен әр түрлі мәселелерді зерттеуге статистикалық әдістерді кең қолдану әрекеті ықтималдықтар теориясының алдына көптеген жаңа міндеттер қойды. Осы негізде бұл теория 19-20 ғасырларда күшті қарқынмен дамытылды. 19-20 ғасырлар бойы математиканың көне салалары да жаңа идеялармен, нәтижелермен толығып, дамып отырды. Мысалы, сандар теориясына математикалық анализ әдістерін қолдану бұрын элементар әдістер арқылы шешілмей келе жатқан көптеген мәселелерді шешуге мүмкіндік берді. Теориялық математиканың зерттеулер нәтижесін практика жүзінде қолдану шешілуге тиісті есепке сан түрінде жауап алуды талап етеді. Осыған байланысты 19-20 ғасырларда математикадағы сандық әдістер оның дербес бір тармағына айналды. Көп еңбек тілейтін есептеуді қажет ететін мәселелерді шешуді жеңілдету, жеделдету ісі әуелі механика-математикалық машиналар мен аспаптарды, ал 20 ғасырдың 40 жылдарынан бастап тез әрекетті электрондық есептеуіш машиналарды талап етті. 19-20 ғасырларда дамытылған математиканың бір тармағы математикалық логика басқару туралы ғылым - кибернетикада және есептеу техникасында қолданыла бастады. Есептеу техникасының кең қолданылуына байланысты программалау теориясы пайда болды. 19 ғасырдың 2- жартысынан бастап математика тарихын қарастыру жедел қолға алынды. 20 ғасырдың 50 жылдарынан бастап математика ғылымының басқару теориясы, кибернетика, алгебралық геометрия, информация теориясы т.б. көптеген жаңа салалары пайда болды. Математиканың осылай қауырт дамуына жаратылыс тану ғылымдары мен техниканың математика алдына қойып отырған талаптары түрткі болды. Мысалы, өндірістік процесті автоматтандыру басқарудың математикалық теориясының тууына себепкер болды.

Пайдаланылған әдебиеттер:
1. Қазақ совет энциклопедиясы (1975)